Abstract

One of the main steps in hyperspectral image classification is the selection of bands that provide the best separability among classes. It is usually understood that the selected bands for classification must contain a large amount of information, and the correlation among selected bands should be small to avoid redundancy. At the same time for optimal classification, class separability should be at maximum value. The question arises whether the most informative spectral regions are really the same as the most discriminant ones for a given set of classes. Answering the question, we developed a new method named Spectral Region Splitting (SRS) to identify interesting spectral regions. This article concludes that the optimal informative and the optimal separable spectral regions are not identical. Furthermore, the cause of the difference is proven theoretically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.