Abstract

Current and future satellite sensors provide measurements in and around the oxygen A-band on a global basis. These data are commonly used for the determination of cloud and aerosol properties. In this paper, we assess the information content in the oxygen A-band for the retrieval of macrophysical cloud parameters using precise radiative transfer simulations covering a wide range of geophysical conditions in conjunction with advance inversion techniques. The information content of the signal with respect to the retrieved parameters is analyzed in a stochastic framework using two common criteria: the degrees of freedom for a signal and the Shannon information content. It is found that oxygen A-band measurements with moderate spectral resolution (0.2 nm) provide two pieces of independent information that allow the accurate retrieval of cloud-top height together with either cloud optical thickness or cloud fraction. Additionally, our results confirm previous studies indicating that the retrieval of cloud geometrical thickness (CGT) from single-angle measurements is not reliable in this spectral region. Finally, a sensitivity study shows that the retrieval of macrophysical cloud parameters is slightly sensitive to the uncertainty in the CGT and very sensitive to the uncertainty in the surface albedo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.