Abstract

Continuous attractor neural networks (CANN) form an appealing conceptual model for the storage of information in the brain. However a drawback of CANN is that they require finely tuned interactions. We here study the effect of quenched noise in the interactions on the coding of positional information within CANN. Using the replica method we compute the Fisher information for a network with position-dependent input and recurrent connections composed of a short-range (in space) and a disordered component. We find that the loss in positional information is small for not too large disorder strength, indicating that CANN have a regime in which the advantageous effects of local connectivity on information storage outweigh the detrimental ones. Furthermore, a substantial part of this information can be extracted with a simple linear readout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.