Abstract

A multi-cell Fog-Radio Access Network (F-RAN) architecture is considered in which Internet of Things (IoT) devices periodically make noisy observations of a Quantity of Interest (QoI) and transmit using grant-free access in the uplink. The devices in each cell are connected to an Edge Node (EN), which may also have a finite-capacity fronthaul link to a central processor. In contrast to conventional information-agnostic protocols, the devices transmit using a Type-Based Multiple Access (TBMA) protocol that is tailored to enable the estimate of the field of correlated QoIs in each cell based on the measurements received from IoT devices. In this paper, this form of information-centric radio access is studied for the first time in a multi-cell F-RAN model with edge or cloud detection. Edge and cloud detection are designed and compared for a multi-cell system. Optimal model-based detectors are introduced and the resulting asymptotic behavior of the probability of error at cloud and edge is derived. Then, for the scenario in which a statistical model is not available, data-driven edge and cloud detectors are discussed and evaluated in numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.