Abstract

This technical note considers a network of stochastic evidence accumulators, each represented by a drift-diffusion model accruing evidence towards a decision in continuous time by observing a noisy signal and by exchanging information with other units according to a fixed communication graph. These network dynamics model distributed sequential hypothesis testing as well as collective decision making. We prove the relationship between the location of each unit in the graph and its certainty as measured by the inverse of the variance of its state. Under mild connectivity assumptions, we show that only in balanced directed graphs do the node variances remain within a bounded constant from the minimum possible variance. We then prove that, for these digraphs, node ranking based on certainty is governed by information centrality, which depends on the notion of effective resistance suitably generalized to directed graphs. Our results, which describe the certainty of each unit as a function of the structural properties of the graph, can guide the selection of leaders in problems that involve the observation of noisy external signals by a cooperative multi-agent network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.