Abstract
Si une fonctionnelle dans un problème inverse non-paramétrique peut être estimée à vitesse paramétrique, alors la vitesse minimax ne donne aucune information sur le caractère mal posé du problème. Pour avoir une borne inférieure plus précise, nous étudions l’efficacité semi-paramétrique dans le sens de Hájek–Le Cam pour l’estimation fonctionnelle dans des modèles indirects réguliers. Ces derniers sont caractérisés comme modèles que l’on peut approcher localement par un modèle linéaire de bruit blanc décrit par l’opérateur de score généralisé. Un théorème de convolution pour des modèles indirects réguliers est prouvé. Ceci s’applique à une large classe de problèmes statistiques inverses, comme montré pour les modèles prototypes du bruit blanc et de la déconvolution. Il est spécialement utile pour des modèles non-linéaires. Nous discutons en détails un modèle non-linéaire de déconvolution où un processus de Lévy est observé à basse fréquence, en obtenant une borne d’information pour l’estimation de fonctionnelles linéaires de la mesure de sauts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.