Abstract
We apply a recently developed technique utilizing machine learning for statistical analysis of computational nitrogen K-edge spectra of aqueous triglycine. This method, the emulator-based component analysis, identifies spectrally relevant structural degrees of freedom from a data set filtering irrelevant ones out. Thus tremendous reduction in the dimensionality of the ill-posed nonlinear inverse problem of spectrum interpretation is achieved. Structural and spectral variation across the sampled phase space is notable. Using these data, we train a neural network to predict the intensities of spectral regions of interest from the structure. These regions are defined by the temperature-difference profile of the simulated spectra, and the analysis yields a structural interpretation for their behavior. Even though the utilized local many-body tensor representation implicitly encodes the secondary structure of the peptide, our approach proves that this information is irrecoverable from the spectra. A hard x-ray Raman scattering experiment confirms the overall sensibility of the simulated spectra, but the predicted temperature-dependent effects therein remain beyond the achieved statistical confidence level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.