Abstract
This paper analyzes the performance of information and energy beamforming in multiple-input multiple- output (MIMO) wireless communications systems, where a self-powered multi-antenna hybrid access point (AP) coordinates wireless information and power transfer (WIPT) with an energy-constrained multi-antenna user terminal (UT). The wirelessly powered UT scavenge energy from the hybrid AP radio-frequency (RF) signal in the downlink (DL) using the harvest-then-transmit protocol, then uses the harvested energy to send its information to the hybrid AP in the uplink (UL). To maximize the overall signal-to-noise ratio (SNR) as well as the harvested energy so as to mitigate the severe effects of fading and enable long-distance wireless power transfer, information and energy beamforming is investigated by steering the transmitted information and energy signals along the strongest eigenmode. To this end, exact and lower-bound expressions for the outage probability and ergodic capacity are presented in closed-form, through which the throughput of the delay- constrained and delay-tolerant transmission modes are analyzed, respectively. Numerical results sustained by Monte Carlo simulations show the exactness and tightness of the proposed analytical expressions. The impact of various parameters such as energy harvesting time, hybrid AP transmit power and the number of antennas on the system throughput is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.