Abstract

Many microbial pathogens can switch to new hosts or adopt alternative transmission routes as environmental conditions change, displaying unexpected flexibility in their infection pathways and often causing emerging diseases. In contrast, parasitic worms that must develop through a fixed series of host species appear less likely to show phenotypic plasticity in their transmission pathways. Here, I demonstrate experimentally that a trematode parasite, Coitocaecum parvum, can accelerate its development and rapidly reach precocious maturity in its crustacean intermediate host in the absence of chemical cues emanating from its fish definitive host. Juvenile trematodes can also mature precociously when the mortality rate of their intermediate hosts is increased. Eggs produced by precocious adults hatch into viable larvae, capable of pursuing the parasite's life cycle. In the absence of chemical cues from fish hosts, the size of eggs released by precocious trematodes in their intermediate hosts becomes more variable, possibly indicating a bet-hedging strategy. These results illustrate that parasitic worms with complex life cycles have development and transmission strategies that are more plastic than commonly believed, allowing them to skip one host in their cycle when they perceive limited opportunities for transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call