Abstract

Rubredoxins are small electron transfer proteins containing one iron atom at their active site. The rubredoxin from the anaerobic bacterium Clostridium pasteurianum has been subjected to molecular dynamics studies starting from the minimized solvated structure. The results of the simulations have been compared with identical ones carried out with selected mutated forms of the protein obtained by molecular modeling. Surface residues, which are highly conserved among rubredoxins and close to the cysteine ligands, can be replaced by glutamates, i.e. long chain carboxylates. The main structural consequence is a shift of the protein backbone bearing conserved aromatic residues. Reciprocally, substitution of the aromatic residue closest to the iron atom shifts the cysteine-containing peptide fragments. These observations have been related to the changes in electron transfer and redox properties previously measured for this set of rubredoxin molecular variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call