Abstract
Phased arrays, commonly used in IEEE 802.11ad and 5G radios, are capable of focusing radio frequency signals in a specific direction or a spatial region. Beamforming achieves such directional or spatial concentration of signals and enables phased array-based radios to achieve high data rates. Designing beams for millimeter wave and terahertz communication using massive phased arrays, however, is challenging due to hardware constraints and the wide bandwidth in these systems. For example, beams which are optimal at the center frequency may perform poor in wideband communication systems where the radio frequencies differ substantially from the center frequency. The poor performance in such systems is due to differences in the optimal beamformers corresponding to distinct radio frequencies within the wide bandwidth. Such a mismatch leads to a misfocus effect in near-field systems and the beam squint effect in far-field systems. In this paper, we investigate the misfocus effect and propose InFocus, a low complexity technique to construct beams that are well suited for massive wideband phased arrays. The beams are constructed using a carefully designed frequency modulated waveform in the spatial dimension. InFocus mitigates beam misfocus and beam squint when applied to near-field and far-field systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.