Abstract

The immunological mechanisms of secondary bacterial infection followed by influenza virus infection were examined. When mice were intranasally infected with influenza virus A and then infected with P. aeruginosa at 4 days after viral infection, bacterial clearance in the lung significantly decreased compared to that of non-viral infected mice. Neutrophils from viral infected mice showed impaired digestion and/or killing of phagocytized bacteria due to reduced myeloperoxidase (MPO) activity. G-CSF production in the lungs of viral infected mice was lower than that of non-viral infected mice after secondary bacterial infection. When viral infected mice were injected with G-CSF before secondary bacterial infection, the MPO activity of viral infected mice restored to the same level as that of non-infected mice. Bacteria clearance in viral infected mice was also recovered by G-CSF administration. Thus, neutrophil dysfunction caused by influenza virus is attributed to insufficient G-CSF production, which induces a secondary bacterial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.