Abstract

There is evidence that influenza vaccination may provide additional benefits by inducing training of innate immunity and increasing humoral responses to heterologous challenges. Immunoglobulin A (IgA) antibodies dominate the early phase of the adaptive response to SARS-CoV-2 infection, but whether their production may be associated with previous influenza vaccination has not been a subject of any study. This study compared serum SARS-CoV-2-specific IgA responses, measured with Microblot-Array assay, in individuals who experienced COVID-19 (N = 1318) and differed in the status of the seasonal influenza vaccine, age, sex, and disease severity. Influenza-vaccinated individuals had a higher seroprevalence of IgA antibodies against nucleocapsid (anti-NP; by 10.1%), receptor-binding domain of spike protein (anti-RBD; by 11.8%) and the S2 subunit of spike protein (anti-S2; by 6.8%). Multivariate analysis, including age, sex, and COVID-19 severity, confirmed that receiving the influenza vaccine was associated with higher odds of being seropositive for anti-NP (OR, 95% CI = 1.57, 1.2-2.0), anti-RBD (OR, 95% CI = 1.6, 1.3-2.0), and anti-S2 (OR, 95% CI = 1.9, 1.4-2.7), as well as being seropositive for at least one anti-SARS-CoV-2 IgA antibody (OR, 95% CI = 1.7, 1.3-2.1) and all three of them (OR, 95% CI = 2.6, 1.7-4.0). Age ≥ 50 years was an additional factor predicting better IgA responses. However, the concentration of particular antibodies in seropositive subjects did not differ in relation to the influenza vaccination status. The study evidenced that influenza vaccination was associated with improved serum IgA levels produced in response to SARS-CoV-2 infection. Further studies are necessary to assess whether trained immunity is involved in the observed phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call