Abstract

The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.

Highlights

  • Influenza A virus (IAV) is a significant human pathogen that is maintained in nature via an enzootic replication cycle among aquatic birds [1]

  • We know that all human strains derive, either directly or via intermediate hosts, from avian viral sources, we know very little about the phenotypic characteristics of the 16 HA subtypes that circulate in aquatic birds and have potential to infect mammals

  • HA membrane fusion properties, in conjunction with the characteristics for protease activation of HA, a requirement for fusion, are critical factors involved in the ecology and transmission of IAVs, and need to be understood if we are to derive explanations for how pandemic viruses emerge in humans

Read more

Summary

Introduction

Influenza A virus (IAV) is a significant human pathogen that is maintained in nature via an enzootic replication cycle among aquatic birds [1]. Aquatic birds are believed to be the natural reservoir for IAV, sporadic cross-species transmission events have led to the spread of IAVs to other avian species as well as mammals [1]. These cross-species transmission events are often characterized by the rapid evolution of viral proteins for adaptation to the new host, which may be influenced by a variety of selective pressures, including differences in availability and structure of host cell receptors, variations in host cell transcription/translation factors, variations in host cell entry mechanisms, and sites of replication. Recent studies have shown that recombinant viruses containing the H5 HA from A/ VietNam/1203/2004 (H5N1) or A/Indonesia/5/2005 (H5N1) were capable of transmitting more efficiently via respiratory droplet between ferrets if the HA contained mutations that confer Siaa2,6Gal binding (N224K and Q226L for H5VN or Q222L and G224S for H5IN), loss of a glycosylation site within the head domain (N158D for H5VN or T156A or N154K for H5IN), and a mutation that increased the stability of the H5 HA (T318I for H5VN) [3,4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call