Abstract

Activation of the latent kinase PKR is a potent innate defense reaction of vertebrate cells towards viral infections, which is triggered by recognition of viral double-stranded (ds) RNA and results in a translational shutdown. A major gap in our understanding of PKR's antiviral properties concerns the nature of the kinase activating molecules expressed by influenza and other viruses with a negative strand RNA genome, as these pathogens produce little or no detectable amounts of dsRNA. Here we systematically investigated PKR activation by influenza B virus and its impact on viral pathogenicity. Biochemical analysis revealed that PKR is activated by viral ribonucleoprotein (vRNP) complexes known to contain single-stranded RNA with a 5′-triphosphate group. Cell biological examination of recombinant viruses showed that the nucleo-cytoplasmic transport of vRNP late in infection is a strong trigger for PKR activation. In addition, our analysis provides a mechanistic explanation for the previously observed suppression of PKR activation by the influenza B virus NS1 protein, which we show here to rely on complex formation between PKR and NS1's dsRNA binding domain. The high significance of this interaction for pathogenicity was revealed by the finding that attenuated influenza viruses expressing dsRNA binding-deficient NS1 proteins were rescued for high replication and virulence in PKR-deficient cells and mice, respectively. Collectively, our study provides new insights into an important antiviral defense mechanism of vertebrates and leads us to suggest a new model of PKR activation by cytosolic vRNP complexes, a model that may also be applicable to other negative strand RNA viruses.

Highlights

  • The presence and replication of viral nucleic acids in vertebrate cells triggers innate immune responses by the activation of antiviral enzymes and induction of type I interferon (IFN) genes [1]

  • Upon viral infection of vertebrate cells, a vigorous innate defense response is initiated via the recognition of viral double-stranded RNA by the protein kinase PKR, resulting in the cessation of protein synthesis and subsequent blockage of viral propagation

  • Cell biological examinations revealed that the transfer of viral RNP from the nucleus to the cytoplasm provides a strong stimulus for PKR activation

Read more

Summary

Introduction

The presence and replication of viral nucleic acids in vertebrate cells triggers innate immune responses by the activation of antiviral enzymes and induction of type I interferon (IFN) genes [1]. The double-stranded (ds) RNA-dependent protein kinase PKR is a key mediator of this innate immune defense functioning as a signal transducer in a variety of cellular processes [2,3]. Human PKR is a latent serine/threonine kinase of 551 amino acids with two consecutive N-terminal double-strand (ds) RNAbinding motifs, a linker domain, and a C-terminal kinase domain [4]. PKR is present in non-stimulated cells at basal levels, but its expression is upregulated by type I IFN, which allows a robust response to viral infection [5]. The best-studied natural target site of activated PKR is serine 51 of the alpha subunit of the eukaryotic translation initiation factor 2

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call