Abstract

BackgroundTraining volume is associated with direct and indirect pathways of bone adaptations. In addition, training volume is a training variable associated with lean soft tissue (LST), which has been shown to be an important predictor of areal bone mineral density (aBMD). Thus, the aim of this study is to investigate the influential role of lean soft tissue (LST) in the association between training volume and aBMD in male adolescent athletes.MethodsThis cross-sectional study was composed of 299 male adolescent athletes, mean age 14.1 (1.8) years, from 9 different weight-bearing modalities. The Ethical Board approved the investigation. The adolescents reported the number of days per week they trained and the time spent training and, from this, the training volume (h/wk) was estimated. The LST and aBMD were assessed by dual-energy x-ray absorptiometry. Somatic maturation was estimated by the peak of height velocity. Mediation analysis was performed to investigate the role of LST in the association between training volume and aBMD. Level of significance was set at p < 0.05.ResultsLST partially explained the association between training volume and aBMD in all body segments: upper limbs (58.37%; β = 0.00142), lower limbs (28.35%; β = 0.00156), spine (33.80%; β = 0.00124), and whole body (41.82%, β = 0.00131). There was no direct effect of training volume on aBMD in upper limbs (CI -0.00085 to 0.00287). Conclusion: The association between training volume and aBMD is influenced by LST in different body segments, mainly upper limbs, demonstrating that interventions aiming to enhance aBMD should also consider LST as an important variable to be managed.

Highlights

  • Training volume is associated with direct and indirect pathways of bone adaptations

  • Partial correlations were tested between dependent, mediation, and independent variables

  • Similar results were found in the analysis of the relationship between lean soft tissue (LST) and areal bone mineral density (aBMD) of all segments: upper limbs (r = 0.448), lower limbs (r = 0.507), spine (r = 0.451), and whole body (r = 0.548)

Read more

Summary

Introduction

Training volume is associated with direct and indirect pathways of bone adaptations. In addition, training volume is a training variable associated with lean soft tissue (LST), which has been shown to be an important predictor of areal bone mineral density (aBMD). Sports participation stimulates other tissues, such as lean soft tissue (LST), which is associated with higher areal bone mineral density (aBMD), through the increased body mass (increased mechanical loads) [3], and through muscular contractions [9]. This mechanism stimulates the bones to adapt (raising the recruitment of bone cells [i.e. osteocytes, osteoblasts, and osteoclasts]) to support the stress generated by the muscular action [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.