Abstract
AbstractOgee spillways with converging training walls are applied to lower the hazard of accidental flooding in locations with limited construction operations due to their unique structure. Hence, this type of structure is proposed as an emergency spillway. The present study aimed at experimental and machine learning-based modeling of the submerged discharge capacity of the converging ogee spillway. Two experimental models of Germi-Chay dam spillway were utilized: one model having a curve axis which was made in 1:50 scale and the other with a straight axis in 1:75 scale. Using visual observation, it was found that the total upstream head, the submergence degree, the ogee-crest geometries and the convergence angle of training walls are the crucial factors which alter the submerged discharge capacity of the converging ogee spillway. Furthermore, two machine-learning techniques (e.g. artificial neural networks and gene expression programming) were applied for modeling the submerged discharge capacity applying experimental data. These models were compared with four well-known traditional relationships with respect to their basic theoretical concept. The obtained results indicated that the length ratio () had the most effective role in estimating the submerged discharge capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.