Abstract

JPEG Reversible Data Hiding (RDH) is a method designed to extract hidden data from a marked image and perfectly restore the image to its original JPEG form. However, while existing RDH methods adaptively manage the visual distortion caused by embedded data, they often neglect the concurrent increase in file size. In rectifying this oversight, we have designed a new JPEG RDH scheme that addresses all influential metrics during the embedding phase and a dynamic frequency selection strategy with recoverable frequency order after data embedding. The process initiates with a pre-processing phase of blocks and the subsequent selection of frequencies. Utilizing a two-dimensional (2D) mapping strategy, we then compute the visual distortion and file size increment (FSI) for each image block by examining non-zero alternating current (AC) coefficient pairs (NZACPs) and their corresponding run lengths. Finally, we select appropriate block groups based on the influential metrics of each block group and proceed with data embedding by 2D histogram shifting (HS). Extensive experimentation demonstrates how our method's efficiently and consistently outperformed existing techniques with a superior peak signal-to-noise Ratio (PSNR) and optimized FSI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call