Abstract
Generic drugs are generally used worldwide because of affordability compared to brand-name drugs. One of the main differences between brand-name and generic drugs is pharmaceutical excipients. We previously reported the effects of pharmaceutical excipients on the membrane permeation of drugs via the paracellular and transcellular routes, which are passive transport routes. P-glycoprotein (P-gp) is a typical ATP-binding cassette transporter and is mostly responsible for drug-drug interactions involving transporters. In the present study, rhodamine 123 (Rho123) was selected as the P-gp substrate, and the effects of pharmaceutical excipients on its membrane transport in the rat jejunum and ileum were examined. Twenty major pharmaceutical excipients widely used in the pharmaceutical industry were selected. The in vitro diffusion chamber method using the rat jejunum and ileum was employed to investigate the effects of pharmaceutical excipients on the membrane permeation of Rho123. The results obtained showed that the membrane permeability of Rho123 significantly (P < 0.05) changed under certain dosage conditions of pharmaceutical excipients such as sodium carboxymethyl starch, pullulan, glyceryl monostearate and so on. Furthermore, the effects of pharmaceutical excipients were site specific in the small intestine. The present results demonstrated that some pharmaceutical excipients altered the membrane permeability of Rho123 in the rat small intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Drug Metabolism and Pharmacokinetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.