Abstract

We study the evolution of cooperation in social networks, aiming in particular at ways of influencing the behavior in such networks using methods and techniques from optimal control theory. This is of importance to many scenarios where politicians or policy makers strive to push consensus on some topic that may seem sub-optimal from individuals' perspectives. To this end, we employ the Continuous Action Iterated Prisoner's Dilemma (CAIPD) as model for the interactions in a social network. This model describes how neighboring nodes influence each other, and in effect determines how different strategies may spread through the network. We extend this model, incorporating a mechanism for external influence on the behavior of individual nodes. Next we prove reachability of an arbitrary network-wide agreement using the Lyapunov's Direct Method. Based on the theory of Linear-Quadratic Trackers we propose a step-wise iterative control algorithm, and show the effectiveness of the proposed controller in various Small World and Scale Free social networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.