Abstract

Acrylic polymer emulsions were synthesized by semi-continuous seeded emulsion polymerization and the corresponding redispersible polymer powders were prepared by spray drying. Methacrylic acid (MAA) was used as the hydrophilic shell monomer. The influences of the amount of MAA on the average particle size of the original emulsion, the dispersion stability, zeta potential, and size distribution of the redispersion emulsion were investigated. The results show that with an increase in the amount of MAA, the particle size of original emulsion, the dispersion stability, and the zeta potential of the redispersion emulsion increased significantly. The size distribution of the redispersion emulsion with a high amount of MAA was unimodal and similar to the original emulsion indicating excellent water-redispersibility. Transmission electron microscopy (TEM) was used to characterize the internal microtopography of the redispersible polymer powder, and results showed that with a higher amount of MAA, millipores with larger pore sizes were present in the transection of the redispersible polymer powder. When polymer powders are redispersed in an aqueous phase, large micropores provide a more convenient channel for water permeation, which optimizes the redispersibility. The hairy structure and higher zeta potential endow the redispersion emulsion with excellent redispersion stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.