Abstract
The growth of app-based taxi services has disrupted the urban taxi market. It has seen significant demand shift between the traditional and emerging app-based taxi services. This study explores the influencing factors for determining the ridership distribution of taxi services. Considering the spatial, temporal, and modal heterogeneity, we propose a mixture modeling structure of spatial lag and simultaneous equation model. A case study is designed with 6-month trip records of two traditional taxi services and one app-based taxi service in New York City. The case study provides insights on not only the influencing factors for taxi daily ridership but also the appropriate settings for model estimation. In specific, the hypothesis testing demonstrates a method for determining the spatial weight matrix, estimation strategies for heterogeneous spatial and temporal units, and the minimum sample size required for reliable parameter estimates. Moreover, the study identifies that daily ridership is mainly influenced by number of employees, vehicle ownership, density of developed area, density of transit stations, density of parking space, bike-rack density, day of the week, and gasoline price. The empirical analyses are expected to be useful not only for researchers while developing and estimating models of taxi ridership but also for policy makers while understanding interactions between the traditional and emerging app-based taxi services.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.