Abstract

The aim of the present study was to investigate whether increased concentrations of lactic acid and potassium chloride (KCl) in contralateral muscles can influence the sensitivity of primary and secondary muscle spindle afferents (MSAs) from ipsilateral extensor and flexor muscles. The experiments were performed on 7 cats anaesthetised with α-chloralose. Recordings were made simultaneously from 2–12 single MSAs from the triceps surae (GS) and/or the posterior biceps and semitendinosus muscles (PBSt). The mean rate of firing and the amplitude of a fitted sine curve of MSA responses to sinusoidal stretching of the receptor bearing muscles were determined. Responses of 42 primary MSAs (17 from PBSt and 25 from GS) were recorded. On 33 of these, clear-cut alterations in sinusoidal response were evoked by injection of 1 ml KCl (200–400 mM) or 1 ml lactic acid (20–50 mM) into the arterial supply of the contralateral GS or PBSt muscles. Six out of 8 secondary MSAs showed sizeable effects to increased intramuscular concentrations of KCl and/or lactic acid (3 from PBSt and 3 from GS). On both primary and secondary MSAs, from GS as well as from PBSt muscles, the large majority of effects were excitatory. All effects on secondary MSAs were compatible with reflex actions on static fusimotor neurones, whereas on primary MSAs different types of reflex responses were observed (i.e. pure static, pure dynamic and mixtures of static and dynamic fusimotor actions). Stimuli related alterations in MSA responses were completely abolished when the contralateral GS or PBSt nerves were anaesthetised. Intravenous injections of KCl and lactic acid, as well as arterial injections of 0.9% NaCl, were ineffective in changing the MSA responses. It is concluded that excitation of chemosensitive sensory endings in contralateral muscles can evoke ipsilateral fusimotor reflexes which are potent enough to significantly change the sensitivity of primary and secondary MSAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.