Abstract

The accuracy of laser drilled holes in metals is limited by a relatively large amount of molten material which is produced when lasers with pulse durations in the range of nanoseconds or longer are used. In general, shortening the pulse duration down to the picosecond or femtosecond regime promises to overcome these problems. In this contribution different influences on hole quality such as energy density, beam quality, and polarization as well as processing strategies for the high precision drilling of steel with ultra-short pulses are presented and discussed. Furthermore, a new method of polarization control is demonstrated by which the hole geometry can significantly be improved and ripples in the surface of the hole walls can be avoided during helical drilling.The accuracy of laser drilled holes in metals is limited by a relatively large amount of molten material which is produced when lasers with pulse durations in the range of nanoseconds or longer are used. In general, shortening the pulse duration down to the picosecond or femtosecond regime promises to overcome these problems. In this contribution different influences on hole quality such as energy density, beam quality, and polarization as well as processing strategies for the high precision drilling of steel with ultra-short pulses are presented and discussed. Furthermore, a new method of polarization control is demonstrated by which the hole geometry can significantly be improved and ripples in the surface of the hole walls can be avoided during helical drilling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.