Abstract

Wood decomposition is a biogeochemical process fundamental to element cycling in forest ecosystems, which could alter the nutrient concentrations and enzyme activities of the underlying forest soils. Wood traits, which vary by tree species, can influence decomposition aboveground, but it is not well understood how wood decomposition associated with different tree types (i.e., angiosperm and gymnosperm species) influences underlying soil nutrient concentrations and enzyme activities. In this study, we evaluated how tree type (for four angiosperm vs. four gymnosperm species) affects underlying soil total carbon (C), nitrogen (N), and phosphorus (P) concentrations; microbial biomass C, N, and P concentrations; and C-, N-, and P-acquiring enzymes activities. We found that decomposing wood significantly increased soil total P, and microbial biomass C and P concentrations. However, the differences in the nutrient concentrations of soil and microbial biomass beneath decomposing wood were not different between angiosperm and gymnosperm species. Surprisingly, the activities of soil C-, N-, and P-acquiring enzymes beneath the decomposing wood differed significantly between angiosperm and gymnosperm species. The soils beneath decomposing angiosperm wood had higher P-acquiring enzyme activity, while the soils beneath gymnosperm wood had higher C- and N-acquiring enzyme activities. The soils beneath angiosperm and gymnosperm wood had a similar C-limitation for microbial metabolism, but the microbial metabolism in soils beneath angiosperm wood was more P-limited compared to soils beneath gymnosperm wood. In conclusion, our findings highlight that the tree types of decomposing wood may affect underlying soil enzyme activities and enzyme characteristics, improving our ability to accurately predict the role of wood decomposition on forest nutrient cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call