Abstract

The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11–20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call