Abstract
Wind-break wall is considered to be an effective way to weaken the inlet flow distortions and hot plume recirculation of air-cooled condensers in a power plant. It is of use to investigate the effects of wind-break wall configurations on the thermo-flow performances of air-cooled condensers. The physical and mathematical models of the air-side fluid and heat flows for the air-cooled condensers in a representative 2 × 600 MW direct dry cooling power plant are established with three different configurations of the wind-break wall. The volumetric flow rate and heat rejection of the air-cooled condensers are calculated and compared on the basis of the simulation results of air velocity and temperature fields at various ambient wind speeds and directions. The results show that the thermo-flow performances of the air-cooled condensers are improved by the extensions of the inner and outer walkways and elevation of the wind-break wall, especially at the wind directions ranging between 0° and 90°. The improvement thanks to the width increase of the inner or outer walkway is superior to that resulting from the elevated wind-break wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.