Abstract

Following the Three Gorges Reservoir (TGR) impoundment, many tributaries were turned into bays; hydrodynamic conditions of TGR profoundly changed the residence time, temperature, and nutrient distributions of bays, and nutrient enrichment occurred in these bays. However, little research has been done on the effects of water level qqfluctuations (WLFs) of TGR on the bay. In this study, Xiangxi Bay (XXB), one of the tributaries of TGR, was selected as the delegate to construct and calibrate a two-dimensional hydrodynamic–temperature–tracer–water quality model based on the CE-QUAL-W2. The results were the following: 1) In spring, as total nitrogen (TN) in the TGR tended to be higher than that in the XXB, the downward WLF increased water exchange, TGR-XXB nutrient flux and TN in the epilimnion of the XXB, and decreased the water exchange and TN in the hypolimnion of the XXB. The upward WLF did the opposite. The situation would be reversed in autumn. 2) Under a larger magnitude or a shorter period of WLF, its corresponding effects on the water exchange and TN increased. 2) Both the downward and upward modes of WLF helped to decrease the thermal stratification of XXB. 4) The upward/downward WLF could be used to decrease the epilimnetic TN of XXB in spring/autumn, and was suggested to reduce the local algal bloom. The WLFs by the TGR regulation could profoundly change the water exchange and nutrient distribution in the bay, which helped to control nutrient concentrations and prevent algal blooms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.