Abstract
This study investigated the rapid response of osteoblasts, which were derived from low-magnitude high-frequency vibration (LMHFV). Refractory period-derived memory response was also observed. MC3T3-E1 cells were incubated and received LMHFV stimulation (0.49 g, 40 Hz) for 30 min. After application of LMHFV, mRNA levels of earlier osteogenic differentiation markers Runt-related transcription factor 2 (Runx2), collagen typeⅠ(Col-Ⅰ), and alkaline phosphatase (ALP) were immediately detected by real-time fluorescence quantitative polymerase chain reaction in the absence or presence of antioxidant. Simultaneously, concentrations of mitochondrial reactive oxygen species (ROS) and average mitochondrial length were also measured. Osteoblasts in the vibration group showed decreased gene expressions of Runx2, Col-Ⅰ, and ALP (P<0.01) and increased levels of mitochondrial ROS (P<0.01) and shortened mitochondria (P<0.01), whereas antioxidant treatment resulted in recovery from changes in the above indicators (P<0.01). LMHFV can downregulate mRNA levels of early osteogenic differentiation markers, promote ROS generation, and mitochondrial fission. .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.