Abstract

In China, the successive government has implemented ambitious programs and policies to reverse the decline in forest cover. As an essential source of freshwater and an ecological barrier for Beijing, Zhangjiakou City has implemented several forest expansion strategies. Topographic conditions in this mountainous area have generated spatially heterogeneous afforestation outcomes. Quantifying the impact of these conditions on implemented forest programs could improve ecological restoration strategies of Chinese mountain areas. Using remotely sensed data from the Landsat 5 Thematic Mapper and the Landsat 8 Operational Land Imager, we generated land cover data to identify forest cover changes in Zhangjiakou City in 1989, 2000, and 2015. Forest cover data, topographic information (elevation, slope, aspect, land relief, and terrain niches), and spatial statistical models (geographically weighted regression [GWR]) were used to analyze re- and afforestation over 2 periods (1989–2000 and 2000–2015). The results show that forest cover in Zhangjiakou City increased by one third from 1989 to 2015. The rate of afforestation from 2000 to 2015 was 4 times the rate observed between 1989 and 2000. A trend toward gradual afforestation of higher-elevation and gentler-slope areas and land relief and terrain niche zones was observed between the 2 periods. Expansion mostly occurred in grasslands, arable lands, and unused lands. Elevation, slope, and land relief were the dominant topographic factors influencing forest cover change. Such factors influenced afforestation directly through their effect on microclimates and local biophysical conditions and indirectly by limiting the geographic area where forest programs could be implemented. Terrain niche was also an important predictor of forest cover change under complex topographic conditions. The GWR results indicate heterogeneous forest cover change processes across the study area. Our analysis could guide the implementation of effective forest expansion programs and policies, particularly for degraded mountain ecosystems.

Highlights

  • Land use and land cover change is regarded as a basic component of global environmental change (Turner et al 2007), and its pace and intensity have accelerated over the last 3 decades (Lambin and Veldkamp 2005)

  • Forestland change is an important issue in the science of land use and land cover change, because forest ecosystems are fundamental for the biosphere due to their provision of multiple ecosystem services (Bottalico et al 2016) that are critical for the human–nature system (Rammer and Seidl 2015)

  • The increase in built-up land and roads resulted in a decrease of forestland in these categories; this forestland decrease in Zhangjiakou City was well managed, because it was restricted to a small area compared with the area where increases took place

Read more

Summary

Introduction

Land use and land cover change is regarded as a basic component of global environmental change (Turner et al 2007), and its pace and intensity have accelerated over the last 3 decades (Lambin and Veldkamp 2005). Forestland change is an important issue in the science of land use and land cover change, because forest ecosystems are fundamental for the biosphere due to their provision of multiple ecosystem services (Bottalico et al 2016) that are critical for the human–nature system (Rammer and Seidl 2015). There have been large forestland changes in many areas of the world, triggering many studies conducted to assess the global consequences of such changes (Fu and Gulinck 1994; Mather et al 1998; Gerhardt and Foster 2002; Rudel et al 2005; Zhang et al 2006; Lambin and Meyfroidt 2010; Barbier and Tesfaw 2015; Jachowski et al 2016). To promote environmental conservation and afforestation, the Chinese government has been implementing a series of ecological restoration programs and policies since 1978, such as the Key Shelterbelt Construction Program (beginning 1978), Mountain Research and Development Vol 40 No 1 Feb 2020: R48–R60

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call