Abstract

Abstract Changes in the timing of extreme precipitation have important ramifications for public safety and storm water management, but it has not received much attention in relation to flooding. This study analyzed the changes in the timing of extreme precipitation in the Poyang Lake basin and projected its future changes for the period 2020–2099. The study also quantified the influences of changes in the timing of peak flows on lake floods based on a hydrodynamic model. The results showed that peak rainfall in the Poyang Lake basin had occurred on later dates during the period 1960–2012, and it is this change that caused a delay in peak streamflows from five rivers in the lake basin. Moreover, the effects of these changes are expected to be more prominent during 2020–2099; for example, the rate of delay will be about 2.0 days per 10 years both for peak rainfall and for streamflow in the Poyang Lake basin. The hydrodynamic simulation further showed that a delay of peak streamflows from five rivers would significantly increase the flood level and outflow of the lake and also prolong the duration of floods. These results indicate that the risk of floods in Poyang Lake is likely to increase in the future, therefore making flood control in this region more challenging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.