Abstract

ABSTRACTIncreasing demands of groundwater in petroleum-recovering regions could elevate the level and mobility of arsenic in groundwater as a result of the enhanced dissolution of arsenic-bearing iron or manganese oxide due to the accelerated sulfate reduction by microorganisms in a reductive environment. To substantiate this possibility, groundwater samples were collected from 220 water wells in the nearby petroleum wells in Kuitun. Dissolved arsenic, iron, manganese, and sulfate levels and pH in groundwater samples were analyzed. The dissolved arsenic levels in groundwater varied from <2.3 to 789.4 μg·L−1, in which approximately 96.4% of the measured values exceeded the allowed limits of the World Health Organization. An inverse relation existed between dissolved arsenic and sulfate levels. Most of the high arsenic-level samples (>300 μg·L−1) were found in wells at close proximity to petroleum wells where a high iron or manganese level was also detected. The oil-exploring activity in the study region seemed to have enhanced the microbial reduction of sulfate in underground environment and hence the level of arsenic in groundwater. The microbial sulfate reduction coupled with the reduction of arsenic-bearing iron oxides in the groundwater environment may explain the spatial heterogeneity of the arsenic level in groundwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call