Abstract

BackgroundExcept for the I/D polymorphism in the angiotensin I-converting enzyme (ACE) gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes. Thus, we investigated whether the G2350A polymorphism in the ACE gene is associated with the changes in cardiac structure and function of ball game players. Total 85 healthy ball game players were recruited in this study, and they were composed of 35 controls and 50 ball game players, respectively. Cardiac structure and function were measured by 2-D echocardiography, and the G2350A polymorphism in the ACE gene analyzed by the SNaPshot method.ResultsThere were significant differences in left ventricular mass index (LVmassI) value among each sporting discipline studied. Especially in the athletes of basketball disciplines, indicated the highest LVmassI value than those of other sporting disciplines studied (p < 0.05). However, there were no significant association between any echocardiographic data and the G2350A polymorphism in the ACE gene in the both controls and ball game players.ConclusionsOur data suggests that the G2350A polymorphism in the ACE gene may not significantly contribute to the changes in cardiac structure and function of ball game players, although sporting disciplines of ball game players may influence the changes in LVmassI value of these athletes. Further studies using a larger sample size and other genetic markers in the ACE gene will be needed.

Highlights

  • Except for the I/D polymorphism in the angiotensin I-converting enzyme (ACE) gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes

  • Prevalence of LVH according to sporting disciplines The result of comparing the frequency of left ventricular hypertrophy (LVH) between ball game players, though basketball players showed the highest left ventricular mass index (LVmassI) and the highest frequency of LVH, no statistically significant difference was observed between each item (Table 2)

  • All the ball game players who participated in this study showed higher LVmassI and higher frequency of LVH than the control group

Read more

Summary

Introduction

Except for the I/D polymorphism in the angiotensin I-converting enzyme (ACE) gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes. As to cardiac structure, while it shows change such as increase in the thickness of ventricular wall caused by increase in the volume of ventricle and hypertrophy of myocardium, as to cardiac function, it is known to show increase in stroke volume and decrease in resting heart rate [2]. Such physiologically adaptive aspect which occurs to athletes, is known to depend on period, intensity and type of physical exercise and time. In case of athletes who take muscle strengthening exercise such as weight lifting or wrestling, it was known that the thickness of left ventricular posterior wall and interventricular septum increase and the left ventricular mass increases [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call