Abstract

The present investigation considers the effects of special roughness patterns on impingement target surfaces to improve the effectiveness and surface heat transfer augmentation levels of impingement jet array cooling. This investigation utilizes various sizes, distributions, shapes, and patterns of surface roughness elements for impingement cooling augmentation. In total, fifteen different test surfaces are considered, either with cylinder small roughness, triangle small roughness, or rectangle small roughness element shapes. Six of these test surfaces also employ large roughness elements with rectangular shapes (along with either triangle or rectangle small roughness elements). Tests are performed at impingement jet Reynolds numbers of 900 and 11000. Nusselt number variations for the small cylinder roughness show different trends with streamwise development and changing roughness height, compared to target plates with small rectangle roughness and small triangle roughness. In general, this is because roughness elements which contain surface shapes with sharp edges generate increased magnitudes of vorticity with length scales of the order of the roughness element diameter. Such generation is not always present in an abundant fashion with the small cylinder roughness because of the smooth contours around each roughness element periphery. Such effects are illustrated by several data sets, including Nusselt numbers associated with the small cylinder roughness with a height of 0.250D at a turbulent Reynolds number of 11000.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call