Abstract

This paper studies the vibration behaviours of laminated plates with consideration of the influences of surface and interface energies. Geometric nonlinearity is taken into account in this model to obtain the results of large amplitude vibrations. Approximate closed-form solutions for simply supported plates, clamped plates and clamped circular plates are provided. Numerical results show that the surface/interface effect can affect the dynamic behaviours of laminated plates at nanometer scale. This is especially for nonlinear (large-amplitude) vibration. In addition, the ratio of the thickness to length of the plate, the external load and number of layers also affect the surface/interface effects for large amplitude vibration. This study is helpful for designing and examining the non-linear dynamic behaviour of laminated nanoplates and nanoscale devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.