Abstract

Recently, high-entropy alloys (HEAs) have attracted much attention because of their superior properties, such as high strength and corrosion resistance. This study aimed to investigate the influences of process parameters on the microstructure and mechanical properties of CoCrFe NiTiMo HEAs using a laser-based powder bed fusion (LPBF) process. In terms of laser power and scan speed, a process map was constructed by evaluating the density and surface roughness of the as-built specimen to optimize the process parameters of the products. The mechanical properties of the as-built specimens fabricated at the optimum fabrication condition derived from the process map were evaluated. Consequently, the optimum laser power and scan speed could be obtained using the process map evaluated by density and surface roughness. The as-built specimen fabricated at the optimum fabrication condition presented a relative density of more than 99.8%. The microstructure of the as-built specimen exhibited anisotropy along the build direction. The tensile strength and elongation of the as-built specimen were around 1150 MPa and more than 20%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.