Abstract

Endophytic bacteria play a crucial role in plant development and adaptation, and the knowledge of how endophytic bacteria assemblage is influenced by cultivation site and plant genotype is an important step to achieve microbiome manipulation. This work aimed to study the roots and stems of endophytic bacteriome of four maize genotypes cultivated in two regions of the semi-arid region of Pernambuco - Brazil. Our hypothesis is that the endophytic community assemblage will be influenced by plant genotypes and cultivation region. Metabarcoding sequencing data revealed significant differences in alfa diversity in function of both factors, genotypes, and maize organs. Beta diversity analysis showed that the bacterial communities differ mainly in function of the plant organ. The most abundant genera found in the samples were Leifsonia, Bacillus, Klebsiella, Streptomyces, and Bradyrhizobium. To understand ecological interactions within each compartment, we constructed co-occurrence network for each organ. This analysis revealed important differences in network structure and complexity and suggested that Leifsonia (the main genera found) had distinct ecological roles depending on the plant organ. Our data showed that root endophytic maize bacteria would be influenced by cultivation site, but not by genotype. We believe that, collectively, our data not only characterize the bacteriome associated with this plant and how different factors shape it, but also increase the knowledge to select potential bacteria for bioinoculant production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call