Abstract

Factors influencing the efficiency of Fenton-based degradation processes are widely discussed in the literature, including the question of involved reactive species (i.e., reactive iron species such as ferryl vs hydroxyl radicals). The present study investigates the Fenton reaction in terms of degradation rates under different reaction conditions (i.e., reactant concentrations, pH, and presence of matrix constituents) using two model compounds (bisphenol S and para-chlorobenzoic acid). Fenton reaction was reported to require acidic conditions with an optimum at pH 3. However, the present study has shown that at very acidic pH (pH ≤ 2), the reduction of Fe(III) to Fe(II) is strongly hampered, lowering the efficiency of the Fenton reaction dramatically. Furthermore, the present study provides evidence that pollutants such as BPS can be degraded at pH 7 in the Fenton process, in the presence of Suwannee River NOM. This indicates that the Fenton reaction may indeed be applied for pollutant degradation at neutral pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.