Abstract

The aircraft impact force directly influences the local failure and global response of the nuclear power plant (NPP) containment, while the existing theoretical models and the field tests were almost based on the flat target. In order to analyze the radius effect of the circular sectional containment on the impact force, a fine FE model of the commercial aircraft A320 was established and validated by the available limited full-scale F-4 Phantom impact experiment. In order to determine the force to crush the A320 FE model, the influences of aircraft longitudinal crushing strength on the impact process were analyzed based on the Riera function. Considering the containment decaying effect to aircraft impact velocity, the impact impulse was theoretically calculated, while the influences of the losses of mass and energy were not included. The numerical simulations of A320 aircrafts impacting on simplified NPP containments with different radii were conducted, which could well reproduce the airframe crushing and debris scattering. By comparison of the simulated impact impulses and the calculation values by the Riera function, the coefficients corresponding to different containment radii are derived and a fitting formula is obtained. Finally, an improved Riera function dependent on the dimensionless ratio of nuclear containment radius and aircraft wingspan is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call