Abstract

Marine X-band radar has been suggested to be capable of monitoring significant wave heights in both offshore and open sea areas. In contrast to studies on offshore radar, significant wave height estimations from coastal radar images, which exhibit complicated radar backscattering features, have received little attention. This study proposes a method for retrieving the significant wave height from coastal areas that are often influenced by nononshore winds. The square root of the signal-to-noise ratio in radar images has been widely applied to estimate the significant wave height. However, nononshore wind cases show a poor correlation between the square root of the signal-to-noise ratio and the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in situ</i> significant wave height. In addition, the spectral shapes from radar images in nononshore wind cases are very different from those in onshore wind cases. To improve the significant wave height estimations from coastal radar images, we implement an artificial neural network algorithm. After training and testing the algorithm, we confirm that the estimated significant wave heights are more reliable for both onshore and nononshore wind cases if the square root of the signal-to-noise ratio, power from nearshore radar subimages, and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in situ</i> wind components are included in the input layer of the neural network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call