Abstract

By means of finite-difference time-domain (FDTD) numerical method, we investigate the possibility to enhance the light absorption in solar cells by employing different nanostructures. The solar cells are made of 100-nm-thick amorphous silicon (α-Si). The impacts of gold nanohole arrays, dielectric nanosphere arrays, and gold nanoparticle arrays on the light absorption are simulated, compared, and analyzed. The results show that gold nanohole arrays functioning as the back reflective layer, dielectric nanosphere arrays, and gold nanoparticle arrays can significantly enhance the light absorption for the solar cells, and the former two can increase the short-circuit current by more than 40 %, showing a great potential to improve the utilization efficiency of solar energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.