Abstract
Chopped carbon fiber-reinforced cement composite (CFRC) has become one of the potential smart materials in recent years. The key process of preparing this kind of composite at the early stage is how to disperse carbon fibers evenly into the cement matrix to achieve CFRC composite with good properties. In this study, a three-step mixing process and a six-step mixing process for the preparation of CFRC were suggested, respectively. The fracture morphology was observed by scanning electron microscopy. The influence of mass fractions of three common dispersants methyl cellulose (MC), carboxymethyl cellulose sodium (CMC) and hydroxyethyl cellulose (HEC) on the dispersion of short carbon fibers in water under certain temperature was investigated prior to the manufacture of CFRC. The correlation between mass fraction and viscosity was discussed, and the dispersion effect was assessed from the structure of dispersants and molding process. A hypothetical capsule theory was proposed to reasonably explain the dispersion effect of MC, CMC, and HEC. The experiments showed that pre-dispersion by ultrasonic vibration improved the dispersion of carbon fibers greatly. The dispersivity of carbon fibers was closely related to the category and mass fractions of dispersants. With the same mass fraction of dispersants at a certain temperature, the dispersion effect was in order of HEC > CMC > MC. Meanwhile, when the mass fraction of HEC was between 0.6 and 0.8 wt% by weight of cement and the mass fraction in the aqueous solution was between 1.65 and 1.80 wt%, carbon fibers dispersed most ideally and distributed further uniformly in the cement matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.