Abstract

There are many different grades of kaolinite clays around the world. Low-grade kaolinite clay is more abundant than high-grade kaolinite clay in various regions. To aim toward the utilization of low-grade kaolinite clay having an original kaolinite content of about 40% to produce calcined clay, this paper investigated the durability properties of concrete incorporating calcined clay produced from high-grade kaolinite clay or high kaolinite content (commercially available metakaolin or CC1) and calcined clay produced from a low-grade kaolinite clay (CC2). Concrete mixtures were designed to have a water-to-binder ratio of 0.60. A fly ash-to-binder ratio of 0.20 and calcined kaolinite clay-to-binder ratios of 0.10 and 0.20 were studied. The chloride penetration resistance and the electrical resistivity of concrete were assessed, while the mercury intrusion porosimetry (MIP) was utilized in evaluating the pore structure of concrete. The test results revealed that concrete with CC1 and CC2 exhibited superior chloride penetration resistance and chloride binding capacity than OPC and FA20 concretes. Moreover, using a higher calcined clay-to-binder ratio resulted in a more refined pore structure, which significantly enhanced the chloride resistance of concrete. Although CC2 revealed less performance in improving chloride resistance than CC1, it had superior performance compared to fly ash.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call