Abstract

Temperature distribution in a river-reservoir system was simulated using a calibrated three-dimensional Environmental Fluid Dynamics Code model under various hypothetical weather conditions and daily repeated large releases (DRLRs) from the upstream boundary. Both DRLRs and weather conditions affect and control the formation and spread of density currents and then affect the bottom-layer temperatures. The DRLRs with longer durations (e.g., 6 or 8 hours) can relatively quickly push cooler release water to the Gorgas upstream monitoring station (GOUS) and the river intake. With the air temperature drops in the first 6 days, simulated bottom temperatures at GOUS for 6- and 8-hr DRLRs are lower than one under 4-hr DRLR, but relatively larger bottom-layer temperature drops only primarily occur during the air-temperature drop and rise period. The release with larger flow rate can also maintain the cooler water temperature downstream. Releasing the same amounts of water, with different release durations and flow rates, has a very similar effect on the downstream water temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call