Abstract

Time-lens technology is of significant interest in signal processing and optical communication. The impacts of group velocity dispersion (GVD) on ultrafast pulse shaping in a time-lens system based on four-wave mixing are explored in this paper. The output signals of temporal magnification and time-to-frequency conversion under different GVDs are theoretically investigated in detail. The simulation results imply that the femtosecond pulse is sensitive to GVD in propagation. GVD has an important effect on nonlinear parametric processes, which results in output signals presenting different pulse shapes and different frequency profiles. Furthermore, a model of silicon nitride waveguide with flat dispersion is proposed by finite element method and signal processing with negligible pulse distortion is realized in near-infrared region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call