Abstract

The producer gas composition and the thermochemical conversion process of a small-scale reverse downdraft reactor has been investigated under ten operating conditions with different fuel bed depths and air supply rates. The operating principle of this research reactor is a batch-fed reverse downdraft process, using wood pellets as the solid biomass fuel. The oxygen-limited regime, where the fuel consumption increases nearly linearly with the air supply, has been identified, and four flow rates over the range of this regime have been investigated. The fuel bed depth was varied between one and four reactor diameters (1D (100 mm)–4D (400 mm)). The results demonstrate that increasing the primary air mass flux leads to both greater fuel consumption and higher temperatures as well as heating rates in the reaction front. Greater air supply rates and the resulting higher temperatures lead to a substantial increase in fuel conversion into permanent gases, rather than tars or char, and a rise in the cold gas effici...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.