Abstract

Photoexcitation and photoionization of atoms, the central part of atom vapor laser isotope separation (AVLIS), relate to the ionization yield and isotope selectivity directly. Doppler broadening of absorption lines is one of the parameters that influence the photoexcitation and photoionization process of atoms. When evaporation temperature is high or beam equipment is absent, Doppler broadening has obvious influence on the ionization yield because most of atoms are non-resonantly excited. In this paper, we study the influences of Doppler broadening of absorption lines on a multi-step photoexcitation and photoionization process of atoms according to the facts of AVLIS. A Doppler-broadened three-level atom system with two resonant lasers is investigated. The interaction between laser field and atoms is described by a density matrix, which is calculated by fourth-order Runge-Kutta numerical method with variable steps. The results show that the ionization yield of atoms decreases with the increase of Doppler broadening of absorption lines under the same laser parameters. At a constant laser power, the ionization yield reaches its maximum value at the best laser bandwidths, which is different from that obtained without Doppler broadening, as reported in published papers. Meanwhile, the best laser bandwidth increases with the increase of Rabi frequency and Doppler broadening when other parameters are constant. Moreover, the best bandwidth of the second laser is smaller than that of the first laser in a multi-step photoionization process of atoms. Therefore, lasers should work at the best bandwidths in AVLIS for highest ionization yield. It is advantageous to make laser bandwidths slightly bigger than the best bandwidths technically for smaller fluctuation of ionization yield, owing to incoercible stochastic volatility in laser bandwidths. The ionization yield increases with the decrease of Doppler broadening, especially at the best laser bandwidths. Therefore, it is necessary to reduce Doppler broadening of atom vapor in laser ionization zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.