Abstract

AbstractSummer stratification often leads to large areas of hypolimnetic hypoxia in lakes and reservoirs. These areas of hypoxia alter fish behaviours and distributions as well as restrict access to valuable prey resources, yet few studies have examined foraging behaviour of fish in response to low dissolved oxygen (DO) concentrations. We observed foraging behaviour of juvenile largemouth bass, Micropterus salmoides, in response to varying DO concentrations in tanks that simulated a stratified lake water column during the summer: 28°C oxygenated epilimnion, 15°C deoxygenated hypolimnion. Compared with saturated concentrations (8.0–9.0 mg/L), hypolimnetic oxygen concentrations of 3.0 mg/L and 1.5 mg/L resulted in a drastic decrease in prey consumption, handling efficiency and time spent below the thermocline mainly due to avoidance behaviour of hypoxic conditions. However, we found at high hypolimnetic prey densities, individual fish were more willing to venture into reduced oxygen concentrations. Several unique behaviours including transporting prey above the oxycline for consumption, aquatic surface respiration and gill flaring were employed by largemouth bass foraging in low oxygen environments. Reduced hypolimnetic oxygen concentrations may influence and alter feeding strategies, especially for fish that rely on benthic prey resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call