Abstract

In order to explore the influence of various carbon introduction on the morphology and photodegradation performance of C/g-C3N4 composites, three kinds of different carbon materials: carbon nanotubes (CNT), graphene (GN) and carbon fibers (CF) were introduced to modify g-C3N4, and the morphologies, light absorption capacities and the underwater purifications of the composite photocatalysts were investigated. Results showed that the composites synthesized with different carbon substrates shows great differences in growth morphology. In addition, the introduction of various carbon sources also has a great impact on the physical and chemical properties of the composites. Compared with GN/g-C3N4 and CF/g-C3N4, CNT/g-C3N4 shows strong light absorption ability, especially in long-wavelength region (570–660 nm). To further study the difference of degradation ability of the composites in the underwater environment, the purification performance of modified g-C3N4 at different water depths were carried out. The results show that under 40 cm of water, where the light intensity and ultra violet spectral are seriously attenuated, the purification efficiency of CNT/g-C3N4 at 40 cm is 3.35 times than that of g-C3N4. This work provides insight in the design of highly efficient metal-free photocatalysts for the environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.