Abstract

The reliability of short fiber reinforced polymer composites is crucial for their successful applications in aerospace engineering with cryo-thermal cycling (CTC). This study investigates the influences of CTC on the tensile properties of short carbon fiber (SCF)/polyetherimide (PEI) composites at room temperature (25 °C) and elevated temperature (170 °C). First, SCF surfaces were coated by carbon nanotube-polydomaine (CNT-PDA) hybrid sizing, and then SCF/PEI composites were prepared via the facile injection molding technique. Impressively and unexpectedly, the tensile strength at 25 °C and 170 °C of SCF/PEI composites is all enhanced by the CTC exposure, attributing to the enhanced mechanical properties of PEI matrix and fiber/PEI interface bonding. In addition, CNT-PDA sizing and CTC exposure have a combined effect on improving the tensile properties of SCF/PEI composites at 25 °C and 170 °C. Overall, the SCF/PEI composites exhibit excellent mechanical properties under extreme service conditions, and are thus promising to serve in aerospace components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.